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Abstract

Kalman Filter is a common algorithm based on two basic steps to
track objects.

After reviewing quickly the theory behind the Kalman Filter, we
will see how it can be implemented in C++ with the library CImg.

Finally, we will see how such a motion tracking program can be
enhanced with some bonus features.
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Introduction

Motion tracking is a major application of Computer Vision. For example, it
can be used to monitor some place and check every movement in this place.
Kalman Filter is a common algorithm for motion tracking.

While the theoretical aspects of the Kalman Filter may be quite compli-
cated, its implementation in C++ with the library CImg is not too difficult,
at least when we only take position and speed into account. But when we
try to use the acceleration too, then the results can be very bad.

Fortunately, adding some new features (some of them are in fact tricks)
to the program can enhance tremendously our results.

Since the features we implemented were most of the time needed by bad
results of our previous attempts, we prefer mixing the process explanation
and the corresponding results. Our progression in this document will be
quite close to our progression while implementing the Kalman Filter, and
those features.

One last thing about the computation part: in order to prevent having
to recompile everything each time we had to change some parameter, we
used a configuration file for most of the useful parameters we introduced.
This configuration file is also useful to choose the dataset. We used two very
simple libraries for the configuration file. They are called ConfigFile and
Chameleon, and can be found here:
http://www.adp-gmbh.ch/cpp/config_file.html.
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Part I

An introduction to Kalman
Filter

1 General presentation
Kalman Filter is to the so-called data linear filtering problem, which in prac-
tice leads to simply tracking the state of an object. It has been the subject of
extensive research and applications and had a lot of success due to the fact
that it’s very powerful, resistant to system’s model’s lack of precision, and
yet quite simple both mathematically and to implement.

The algorithm is divided into two steps, though we could mix them into a
one step operation, but we need two steps to take a clear look at our doings.

2 Prediction step
We first have prediction step, which is a very primal guess which doesn’t take
into account process noise, movement variations, etc.

The operation is:

x−t = Axt−1P
−
t = APt−1A

T +Q

A relates the state at t− 1 to the state at t without considering the pres-
ence of process noise, movement variations, etc. It’s simply called transition
state matrix. In practice, it may change with each step, however we will
consider it constant.

Q is the process noise covariance. It also may vary with each step, however
we also consider it constant to solve the problem.
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3 Correction step
After prediction step comes correction step, the objective here is to correct
errors taking into account noise and initial variations compared to the move-
ment modelised by the chosen matrix A.

The operations are:

Kt = P−t H
T × (HP−t HT +R)−1xt = x−t +Kt(zt −Hx−t )Pt = (I −KtH)P−t

The state z is a measurement of the current state, for example, in our
implementation we chose to use cross-correlation to determine a measurement
z of the state x. The goal of the correction step is to blend this measurement
and the prediction to obtain an accurate actual position.

The matrix K is chosen to be the gain or blending factor that minimizes
the a posteriori error covariance.

The matrix H relates the state to the measurement. It may vary through
the step of the algorithm but we assume it constant.
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Part II

Kalman Filter for constant
speed

Given the general version of Kalman Filter algorithm we can notice that it
only requires the determination of a few parameters to be able to use it to
predict the states of a system through the time.

Those factors are A, Q, R and H.

Q and R will be fixed by the algorithm and determined empirically by
experimenting the algorithm with various datasets. Also, R will sometimes
be adjusted in order to make the algorithm more resistant to occlusion, when
we estimate that the object may be hidden, we will strongly increase this
factor.

H will be considered as a representant of the observables of the system.
Through our work we only included position as an observable but extending
the kalman filter to take account of, let’s say, the textures of the object, by
adding data into the state vector for example, we may extend it to both
position and texture informations.

A is directly linked to the nature of the movement we want to track,
that’s why, given that for a movement at constant speed we have:

xt = xt−1 + vt−1δt

And that the state vector is: (
p
v

)

6



We choose A to be:

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


Implementation is then simply a matter of translating the mathematical

equations into CImg operations. This part of the project was done as a lab
exercise and didn’t need any extensive improvements.
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Part III

Kalman Filter for adaptive
speed (acceleration)

1 Adaptation of the algorithm
Explanation given in the previous section about the choice of Q, R and H
are still true when we want to track an adapative speed movement. Indeed,
the only adaptation we theorically have to do is on A. Although we will see
that it indeed had a huge impact on the quality of the algorithm, especially
when comparing its occlusion resistance compared to the one of the constant
speed algorithm.

To choose A we need to model physically the movement of an object
at adaptive speed. A good approximation is to consider it as a “constant”
speed movement where the “constant” speed is growing according to a really
constant acceleration.

That’s why we model it with the following equations:

xt = xt−1 + vt−1δtvt = vt−1 + at−1δt

With a state vector being: pv
a


This leads to the following matrix A:
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A =



1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


This was implemented quite easily given the original work for constant

speed. The code only required minor modifications:

• Modify A according to our formula

• Modify the state vector to include acceleration

• Modify R, Q and H dimensions

And so was the job done, although we observe some issues compared to
the constant speed algorithm.

2 Observations
Taking into account the acceleration turns out to be quite complicated. Ba-
sically, when the target gets invisible for a certain amount of time, the classic
prediction and correction steps lead to wrong results which get accumulated.

For example, when a cyclist gets hidden underneath some trees, the po-
sition guessed after the Kalman Filter process may not correspond to the
actual position of the cyclist: we just pick the position corresponding to the
best patch (for the maximum Cross Correlation). This kind of error occur
as long as the cyclist stays hidden. However, what might be the difference
between the precedent case, when we did not take into account acceleration?

The problem is that when we make our first error concerning the position
of the target, its speed (as a vector, i.e. including its direction) may vary a
lot. Therefore, the new value of the acceleration of the target may be very
different from what it should be. It can be much higher (in norm), and it can
have a very different direction. Add to this the influence of that new value of
the acceleration on the future value of the speed, and it becomes clear that
the prediction step in the future frame will give very bad results.
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In other words, within two or three frames, when the target is not visible,
the acceleration tends most of the time to modify the speed in a wrong way,
due to the error made in the position of the target in the successive correction
steps. This results of course in a tremendous error in computation of the new
position of our target, within very few frames, and getting even worse as the
target stays hidden longer.

Obviously, we needed to use some trick to prevent such a bad guess in
the new postion make the found positions inevitably derive, just because of
the acceleration influence.
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Part IV

New features

1 Improving occlusion resistance
Somehow, we still had to fix our implementation of the Kalman Filter with
acceleration because of its very bad resistance to occlusion.

1.1 Finding when we loose track of the target
The idea we implemented is actually quite simple. Instead of believing blindly
in the result of the Kalman Filter process, we should check its pertinence.
Indeed, when we actually loose track of the target, the best match we find
must be far worse than the previous ones. But what does “worse” means?

It simply has to do with the value of the maximum Cross Correlation
in the search box. Since it is the criteria used to choose the best patch in
the search box (the one which looks the most like the previous one), we can
think that a low value of the maximum Cross Correlation means a bad match
between the two patches.

The idea we chose was to measure the relative error between the current
maximum Cross Correlation and the mean of the previous maximum Cross
Correlation. If the current maximum Cross Correlation is m and the mean
of the previous ones is m̄, then our criteria is:

m̄−m
m̄

≤ 1− λ

where 1 − λ is the maximum relative error we tolerate. When the current
relative error exceeds this value, then we consider that we just lost track of
the target.
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We actually can simplify the precedent criteria:

m ≤ λ · m̄

Of course, λ represents the minimum percentage of the resemblance of new
patches compared to previous ones.

This is the version we implemented in the code (but it is strictly equivalent
to the previous one). This parameter is referred as comparisonFactor in the
section mean of the configuration file.

Of course, when the maximum Cross Correlation is low, we don’t consider
this bad value for the computation of m̄. We also have to wait some time
to initialize the value of m̄. The parameter minimumFrames in the section
mean of the configuration file is the number of frames to wait until we use
the previous criteria to know wether the match is good or not.

1.2 What to do when we loose track of the target
The idea is simple: the most probable reason why we would loose track of
the object is the presence of some obstable which prevented us to see it.
Therefore, no matter how hard we look around for some resembling patch,
we won’t actually find the target. That’s why in such cases, the correction
step actually messes everything up, and we would probably get better results
doing only the prediction step.

However, the trajectory might be weird, even when the target is hidden.
Therefore we must progressively increase the size of the search box as long as
we don’t find the target again. The results showed that increasing the size of
the search box tended to slow down the computation. We decided therefore
to limit the growth of this box to a certain factor of the size of the target.
This factor is referred as maximumSizeFactor in the section searchBox of
the configuration file.

Moreover, we must control the speed of this increase. If the search box
becomes too big too fast, another potential target, quite resembling but not
the actual one we were tracking, can be taken for the good one, while it is
not. On the other hand, if its growth is not fast enough, then the target can
become out of reach (outside the search box). We chose to quantify this speed
with another factor, referred as increaseFactor in the section searchBox
of the configuration file. This is the factor of the size of the target which will
be added to the size of the search box as long we loose track of the target.
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When we find again the target, we must of course decrease the size of
the search box, to speed up the computation, and to prevent it to be too big
(which could result in two similar objects present in the search box).

Finally, another problem must be solved. When two objects quite similar
are moving in a video, and the one we are tracking gets hidden behind the
other one for one or two seconds, then the program can be mistaken, and con-
sider the second one as the target. What we see in such cases is the position
of the target jumping from one object to the other. We used one more trick
to help in such cases. Before beginning to decrease the size of the search box,
we have to wait some time, to be sure we actually find again our target. The
corresponding parameter is referred as minimumGoodMatchesToDecrease in
the section searchBox of the configuration file.

1.3 Observation
The parameter λ referred above is actually very important, and the program
is very sensitive to its value. If it is too low, then we realize too late that we
just lost track of the target, whereas if is too high, the program thinks it lost
the target all the time, and gets rid of the correction step, which is after all
useful most of the time.

For example, to track the first cyclist, we had to choose about 0.6, whereas
to track one of the people walking, we had to choose 0.8. Indeed, since all
the walking people are wearing the same clothes, they look a lot like one
another. Therefore we must say to the program that we don’t tolerate a
relative error superior to 20 %, to prevent the target from jumping from one
person to another.

To better observe the process, we decided to show the target in a red box,
and the search box in a black box.

Figure IV.1: Search box resizing when loosing track of the target
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2 Color support
The algorithm which was originally written in lab only worked with grayscale
image. It had the advantage of making the computation faster but made the
algorithm not very resistant on some particular datasets.

For example, let’s consider a dark green square moving at constant speed
above a dark red background. Theoretically it’s a perfect case for our al-
gorithm: images are clean (noise could be considered to be equal to zero),
the tracked object has a constant and simple form and the movement is at
constant speed which is the simplest case. Yet, if we work with grayscale im-
ages we will fail as dark green and dark red are very similar (most certainly
exactly similar indeed) in greyscale. That’s why color support is needed to
improve the algorithm.

Its implementation only required to modify the step of the algorithm
where you measure the position of the object, in our case, it implied a mod-
ification of the cross correlation measurement function. This modification
was quite simple since we only had to modify the computation of the mean
matrix of a given matrix u.

Indeed, in the first implementation we had:

ū = u.sum()
u.dimx()× u.dimy()

Which is not accurate for a multiple color channels image since CImg will
use three different images of size x × y to represent a three color channels
image. That’s why it had to become:

ū = u.sum()
u.dimx()× u.dimy()× u.dimv()

It then worked quite well, and we also observed some deviations due to
the color tracking:

• Computation is a bit slower, this is not surprising since CImg implemen-
tation implies that working with color images implies at least 3 times
(4 times if an alpha channel is present in the image) more operations
because the matrix contains at least 3 times more factors.

• On greyscale images, the tracking seems a bit less stable (target os-
cillates a little around the real position of the object) although this is
maybe more of a feeling than a tangible problem.
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We also think that in some cases we could get better results by using
only greyscale images or by focusing on a particular channel of the images or
one other image factor such as luminosity. For example, one of the provided
datasets showed a fish in a see. The images were not very clear and tracking
is almost impossible (plus the fish is going back and forth out of the image).
Yet, we feel that using luminosity channel instead of all the channels may
lead to interesting results since the fish is very brilliant. Unfortunately, given
the time table, we couldn’t verify our idea.

3 Multi-tracking

3.1 Goals
The main objective of multi-tracking is obviously to track multiple targets.
However, simply doing this is quite easy but kind of useless though it’s funny
to see a multi-tracking in action. That is why we can use the different targets
to make the algorithm more resistant to occlusion but mostly to prevent the
algorithm to be mistaken when the target looks like other possible targets
(which we will multi-track) in the scene. For example, that is the case with
the cyclists video or the walking guys video.

3.2 Principle
We are going to present the principle of this method with only 2 targets
because it’s simpler to describe with words and in the meantime easy to
extend to multiple targets.

Let’s say that we have 2 targets: target 1 and target 2. Let’s imagine
that they are following each other at different speed. For example, target 2
is following target 1 and then gets ahead target 1. Let’s also suppose that
they have a very similar appearence.

With the classic kalman filter, while we’re tracking target 1 we may lost
him and get him confused with target 2 while target 2 is going ahead of
target 1 and then we may continue to follow target 2 and basically, target 1
would be lost.

Let’s now say that we are tracking target 1 and target 2 at the same
time. When target 2 goes ahead of target 1 and we confuse target 1 with
target 2, we can use the tracking of target 2 to realize that we confused 1
with 2. Indeed, if target 2’s tracking is good, event if target 1 algorithm’s
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prediction is better than target 2 algorithm’s prediction, the prediction (i.e.
step 1 of kalman filter) of target 2’s position will probably score a lot more
better with the algorithm predicted position of 2 than the prediction of 1.
In this case, we will assume that measurement failed and so that correction
step was mistaken so we will skip this step for target 1’s position.

3.3 Implementation
Given a set [1, n] of targets, we define a matrix D which coefficients are
defined by:

λ ∈ [0, 1], Di,j = λcorrelation(x−it , xit) + (1− λ)correlation(x−it , xjt)

Where x−it is the state at prediction step for step t of the algorithm and
xit is the state at correction step for step t of the algorithm.

To choose the matching patch for target i, we choose the patch j for which
we have a highest Di,j, except if Dj,j is the highest one for j. In this case,
the matching patch for target i is the prediction one (i.e. we skip correction
step).

λ was typically chosen around 0.7 and above which is a way to say that
we trust the algorithm result and that has proven efficient as long as the
targets are not too mixed together. In the opposite case you may want to
decrease this value to make sensitive to target’s switching.
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Figure IV.2: Multi-tracking

4 Trying to find automatically the targets
One of the annoying things with our implementation of the Kalman Filter
was that we had to manually initialize the position of our target. A much
better program would find by itself were the objects in motion are.

To do such a thing, we have two ideas. If the video camera does not
move, then we can use a static frame of the background, and substract the
current frame to the background frame. That way, we can distinctly see the
potential targets.

Figure IV.3: Abstracting background to find the potential targets

17



But this is actually impossible to do when the video camera also moves.

Another idea would be to measure the displacement of each pixel in the
frames computing the optical flow. Then, when the optical flow value is high,
something is moving. We must then choose a threshold to decide the limit
above which a pixel is considered as moving.

Figure IV.4: Using the optical flow to find the potential targets

Such tricks would have to be done in a pre-process computation, only on
the first frames, to detect the positions and the dimensions of the potential
targets. Then, we would be able to use the classic program.

Unfortunately, we did not have time enough to complete this, computing
thanks to those images the positions and dimensions of the targets. This
might be a good idea, but I’m truly sorry we could not make it on time for
this project.
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Conclusion

This project clearly showed to us the limits of the Kalman Filter. Indeed,
while a simple implementation of it with only position and speed in the
state vector worked nearly out of the box, when we added acceleration, the
correction step tended to worsen errors which occurred when the target got
hidden.

Skipping this correction step and adapting the size of the search box
when we loose track of the target gave us a solution for this problem. But
this solution relies in fact in some very important parameters, which values
vary tremendously from one video to another. To be more accurate, the
important factors are the speed of the objects in motion, the typical distance
between two objects in motion, and their percentage of resemblance.

Some other interesting features have been implemented too, such as color
support, with a limited impact, and multi-tracking which was a real break-
through, even though this feature was not perfect yet.

Unfortunately, a good idea about finding automatically the target couldn’t
be implemented in time, but we could foresee the kind of solution we could
try to implement.

In the end, this project has been full of teachings, since it allowed us to
see how powerful the Kalman Filter can be, how limited it can be at the
same time and what kind of solutions we could bring to enhance its results.
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